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Abstract. An evolutionary reinforcement-learning algorithm, the operation of 
which was not associated with an optimality condition, was instantiated in an 
artificial organism. The algorithm caused the organism’s behavior to evolve in 
response to selection pressure applied by reinforcement from the environment.  
The resulting behavior was consistent with the well-established quantitative law 
of effect, which asserts that the time rate of a behavior is a hyperbolic function 
of the time rate of reinforcement obtained for the behavior. The high-order, 
steady-state, hyperbolic relationship between behavior and reinforcement ex-
hibited by the artificial organism did not depend on specific qualitative or quan-
titative features of the evolutionary algorithm, and it described the organism’s 
behavior significantly better than other, similar, function forms. This evolution-
ary algorithm is a good candidate for a dynamics of live behavior, and it might 
be a useful building block for more complex artificial organisms. 

1     Background: Matching Theory and Reinforcement Learning 

During the past three decades, the mathematical description of behavior-environment 
relationships has become an important part of the experimental analysis of behavior. 
Perhaps the most widely studied and successful mathematical work in behavior analy-
sis is the family of equations known as matching theory [1]. In dozens of experiments 
with many species, including humans, matching theory has been shown to accurately 
describe the relationship between properties of behavior and properties of a variety of 
psychologically significant environments. The most fundamental equation of match-
ing theory is its hyperbolic rate equation, which is often referred to as the quantitative 
law of effect. 
    As is well known, E. L. Thorndike (c. 1911) discovered the law of effect, or princi-
ple of reinforcement, in his famous puzzle-box experiments. B. F. Skinner (c. 1938) 
later gave the law of effect a stochastic cast by stating that positive reinforcement in-
creased the probability of a behavior’s future occurrence. In 1961, Skinner’s student, 
R. J. Herrnstein, published an influential paper [3] in which he reported that pigeons’ 
rates of choosing various alternatives (i.e., keys to peck) in a multi-alternative  
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environment was governed with a remarkable degree of accuracy and precision by a 
simple algebraic equation that related the rate of key pecking on the various alterna-
tives to the rate of reinforcement obtained for pecking on those alternatives. This 
equation came to be known as the matching law. From this equation, Herrnstein [4] 
derived the hyperbolic rate equation in 1970, and since then a great deal of experi-
mental and mathematical research on matching theory has expanded its scope to many 
species, behaviors and reinforcers, and to a variety of experimental and naturalistic 
environments [1]. 

The hyperbolic rate equation, or quantitative law of effect, states how the absolute 
rate of a behavior, R, in a given environment is governed by the absolute rate of rein-
forcement, r, obtained for that behavior, 
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where k and re are parameters of the hyperbola. The parameter, k, is the y-asymptote 
of the hyperbola, and re determines its curvature, that is, how rapidly the function ap-
proaches its asymptote. As interpreted by matching theory, k is related to properties of 
behavior such as the amount of effort the behavior requires, and re is related to addi-
tional sources of reinforcement that may be available in the environment. In behavior 
analysis, Equation 1 is now recognized as a fundamental statement of the way rein-
forcement governs behavior. 

An important feature of Equation 1 is that it describes behavior in the steady state, 
when it is in equilibrium with conditions in the environment. Each point on the hy-
perbola represents, for a particular behavior and a particular reinforcer, the average 
equilibrium response rate that is supported by an average reinforcement rate. In most 
experimental situations, R >> r, in other words, relatively few instances of the behav-
ior are reinforced. The problem of how behavior gets to the steady state has been  
pursued vigorously, but as yet has not yielded a generally accepted mathematical dy-
namics. As might be supposed, one of the most popular approaches to this problem is 
based on optimality theory [9]. Another approach is based on linear filtering [7], and 
very recent work has made use of computational modeling based on an evolutionary 
algorithm [6]. The computational approach to behavioral dynamics, which dovetails 
with work on reinforcement learning in artificial life and related disciplines, is the 
subject of this article. 

Reinforcement learning algorithms in machine learning and artificial intelligence 
fall into two broad categories. Algorithms in one category deal with the expected util-
ity or value of different courses of action [5, 12]. Temporal-difference learning is an 
example of this type of algorithm. Utility-based algorithms have been applied to many 
problems, including some that are relevant to the behavior of live organisms, such as 
chaining [13], conditioned reinforcement [13], and multi-alternative responding that is 
consistent with Herrnstein’s original matching equation [2]. The second category of 
reinforcement learning algorithms is concerned with finding the best action or policy 
in a particular set of circumstances [8]. These algorithms usually entail evolutionary 
principles. Action-based evolutionary algorithms have also been widely applied, in-
cluding to problems that are relevant to the behavior of live organisms, such as forag-
ing in multi-alternative environments, which can also be described by the original 
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matching equation [10-11]. Virtually all of the existing utility-based and action-based 
reinforcement learning algorithms are designed to solve an optimality problem, that 
is, they work either by attempting to maximize the expected utility of a sequence of 
actions, or by attempting to maximize in some way the overall outcomes of an agent’s 
actions. 

The reinforcement learning algorithm that will be discussed in this article falls into 
the second category, although it is not a typical example of this category. It is an evo-
lutionary algorithm that is not, however, designed to solve an optimality problem.  
Instead, it is simply used as the dynamic mechanism of an artificial organism’s behav-
ior. The organism’s behavior evolves through a process of selection, reproduction and 
mutation over many generations, or time steps, where selection pressure is applied by 
the environment in the form of reinforcing stimuli. The behavior reaches steady states 
in response to constant time-averaged reinforcement rate inputs, and these steady 
states can be compared to the requirements of Equation 1. The questions of interest in 
this research are whether the behavior of an artificial organism that operates accord-
ing to evolutionary principles conforms to Equation 1, and if so, whether this confor-
mance depends on specific implementations of the evolutionary principles. 

2     The Artificial Organism and Evolutionary Algorithm 

In this section, the structure and operation of the artificial organism will be described, 
along with the components of the evolutionary algorithm that constitutes its dynam-
ics.  

2.1   The Artificial Organism 

The artificial organism consists of 100 10-bit strings that represent integers ranging 
from 0 through 1023. This collection of bit strings constitutes the organism’s reper-
toire of behaviors or actions. The behaviors can be sorted into classes, called operants, 
based on how they act upon the environment. A rat’s or human’s lever press in an ex-
perimental chamber, for example, is an operant defined by a switch closure. Individ-
ual members of this class include a lever press with the right limb, a lever press with 
the left limb, a high-force press that exceeds the force required for switch closure, and 
so on. Partitioning the 100 bit strings into operant classes sets the baseline structure 
and operation of the artificial organism. For our purposes we will define just two 
classes, one consisting of the 41 integers from 0 through 40, and one consisting of the 
remaining 983 integers. The first behavioral class will be designated the target oper-
ant, analogous to a lever press. The second behavioral class represents doing some-
thing else. 

The artificial organism is initialized with 100 10-bit strings selected at random 
from the 1024 possible strings. The organism’s behavior at each time step is deter-
mined by the relative frequencies with which the integer values of these strings fall 
into the different operant classes. The relative frequencies constitute the probabilities 
that the organism will emit a behavior from each class, and these probabilities are 
used to determine which operant the organism emits at each moment. 
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2.2   Fitness 

When an operant is reinforced, it is identified as fit with respect to conditions in the 
environment. Two definitions of fitness will be considered. For midpoint fitness, the 
integer midpoint of the reinforced class of behavior is taken as the fitness criterion, 
that is, it represents the fittest individual behavior. For specific individual fitness, the 
fitness criterion is the integer value of a specific individual behavior selected from the 
reinforced class, based on the relative frequencies of the individual members of that 
class. In both cases, the fitness of each of the 100 bit strings that constitute the organ-
ism’s behavioral repertoire is defined as the absolute value of the difference between 
that bit string’s integer value and the fitness criterion. Note that this method of defin-
ing fitness means that lower fitness values are associated with fitter individual behav-
iors. 

2.3   Parents 

Following a reinforcement, parents are chosen for mating on the basis of their fitness 
by selecting fitness values from a uniform fitness density function, 
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or an exponential fitness density function, 
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For all functions, p(x) is the probability density associated with a fitness value, x, and 
µ is the mean of the density function. These fitness density functions are completely 
determined by their means. They associate higher probability densities with lower fit-
ness values, and hence with fitter individual behaviors. A general method for con-
structing functions of this type is given in [6]. 

Following a reinforcement, a father behavior is chosen from the repertoire by 
drawing a fitness value at random from one of the fitness density functions, and then 
searching the organism’s repertoire for a behavior with that fitness. If none is found, 
then another fitness value is drawn at random from the fitness density function, and so 
on, until a father behavior is found. A distinct mother behavior is obtained in the same 
way.  

In the event that reinforcement does not occur at a given time step, parents are se-
lected at random from the organism’s repertoire. In either case, 100 sets of parents are 
chosen, each of which produces one child behavior. The resulting set of 100 child be-
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haviors then replaces the artificial organism’s behavioral repertoire, and a behavior 
from this repertoire is chosen for emission using the method described earlier. 

2.4   Reproduction 

Two types of reproduction will be considered. In bitwise reproduction, each bit in a 
child’s bit string is set equal to the corresponding bit either from the father’s bit string 
or from the mother’s bit string, each with a probability of 0.5. In crossover reproduc-
tion, the parents’ bit strings are sliced at a random location and then combined by 
crossing over. One of the resulting bit strings is chosen at random as the child. 

2.5   Mutation 

After a new generation of behaviors has been produced, a fixed percentage of the be-
haviors undergoes mutation, that is, the behaviors’ integer values are changed. The 
individual behaviors that undergo mutation are chosen at random from the organism’s 
repertoire. Three methods of mutation will be considered. In Gaussian mutation, the 
integer value of the chosen behavior is taken as the mean of a Gaussian distribution of 
integers with a specific standard deviation. A value chosen at random from this distri-
bution is then taken as the mutant. Should the mutant fall outside the range of accept-
able values (0-1023), it is wrapped to the other end of the range. In bit-flip mutation, 
one bit from the chosen behavior’s bit string, selected at random, is changed. In ran-
dom individual mutation, the integer value of the chosen behavior is replaced with a 
value selected at random from the range, 0-1023. 

3   Experimental Studies of the Artificial Organism’s Behavior  

Extensive parametric studies of the artificial organism’s behavior have been con-
ducted [6], and will be summarized here. The purpose of these studies was to deter-
mine whether the behavior of the artificial organism conformed to Equation 1, and if 
so, whether this conformance depended on specific implementations of the rules of 
the evolutionary algorithm. In all experiments, reinforcement was set up, or made 
available, at random times following the delivery of the previous reinforcement. Once 
reinforcement was made available, it was delivered as soon as the organism emitted 
the target operant. Environments that work in this way are said to arrange random in-
terval (RI) schedules of reinforcement. An RI schedule is characterized by the mean 
of its intervals. Evidently, an RI schedule with a small mean arranges frequent rein-
forcement for the target operant, whereas an RI schedule with a large mean arranges 
infrequent reinforcement.  

In the three series of experiments to be described in this section, the mean of the RI 
schedules ranged from 1 to 200 time ticks. A single experiment consisted of arranging 
a series of approximately 10 RI schedules, each with a different mean, one at a time. 
Each schedule remained in effect for 5,000 to 45,000 generations, or time steps, after 
which the next schedule was arranged, and so on. Each schedule yielded an average 
rate of emission of the target operant, R, and an average rate of reinforcement, r. 

At the beginning of the experiment, an initial interval from the RI schedule was 
started, and the organism emitted its first behavior according to the method described 
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earlier. If the emitted behavior came from the target class, and if its latency since the 
last reinforcement (or since the start of the session in this case) equaled or exceeded 
the scheduled random interval, then a reinforcer was delivered. A new generation of 
behaviors was then produced using a fitness density function, and a new interval from 
the RI schedule was started. The organism then emitted its second behavior, and so 
on. If at any time a target operant was emitted but not reinforced, or if the emitted be-
havior did not come from the target class, then a new generation of behavior was pro-
duced from random parents, after which the organism emitted its next behavior, and 
so on. 

3.1   Parametric Study of the Form and Mean of the Fitness Density Function 

Five experiments were conducted using a uniform fitness density function, five were 
conducted using a linear fitness density function, and five were conducted using an 
exponential fitness density function. The five experiments for each function form ar-
ranged mean fitnesses (µ in Equations 2-4) ranging from 10 to 200. In all experiments 
the midpoint fitness definition and bitwise reproduction method were used. Gaussian 
mutation with a standard deviation of 25 was used to produce mutants of 3% of each 
generation’s behaviors. 

The behavior of the artificial organism in these experiments reached a dynamic 
equilibrium with the RI schedule such that the momentary rate of the organism’s be-
havior varied around a stationary mean value. Reinforcements tended to pull the or-
ganism’s population of bit strings into the target class, while nonreinforcement tended 
to pull the population of bit strings out of the target class and return the organism to 
its baseline state. 

An example of the steady-state behavior of the artificial organism over the range of 
RI schedules used in these experiments is shown in Figure 1. The data in the left panel 
were generated using a linear fitness density function with µ = 40. Data are shown 
from only the last 500-generation block, and for only a few of the RI schedules used 
in the experiment. The smooth curve is the best fitting hyperbola (Equation 1), which 
accounts for 98% of the variance in the target behavior. The outcome shown in this 
panel is typical of experiments with live organisms. It also may be worth noting that 
the method of arranging RI schedules and of averaging response and reinforcement 
rates used in these experiments are identical to the methods used in experiments with 
live organisms. Data in the right panel of Figure 1 were generated using an exponen-
tial fitness density function with µ = 40. The data were averaged over approximately 
40 500-generation blocks and are shown for all the RI schedules used in the experi-
ment. The smooth curve is the best fitting hyperbola, which accounts for more than 
99% of the variance in the target behavior. 

The outcome shown in the right panel of Figure 1 is typical of the outcomes of all 
experiments in this series. When the data were averaged over 5,000 to 45,000 genera-
tions, which reduced the standard errors of these means to very small values, Equation 
1 accounted for essentially all the variance (> 99% in most cases) in the artificial or-
ganism’s target behavior, and this was the case regardless of the form or mean of the 
fitness density function used to generate the data. 
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Fig. 1. Target behavior emissions per 500-generation block plotted as a function of contingent 
reinforcements per 500-generation block. Smooth curves are best fitting hyperbolas (Equation 
1). The left panel, which shows data from only the last 500-generation block, is similar to the 
outcome of an experiment with a live organism. The right panel shows data for more RI sched-
ules (using a different fitness density function), and averaged over about 40 500-generation 
blocks. 

The hyperbolic form of the function relating the rate of the target behavior and the 
rate of reinforcement obtained for the target behavior was further tested by comparing 
it to fits of a two-parameter asymptotic exponential, a two-parameter asymptotic 
power function, and a two-parameter ramp function. The latter is a piecewise  
continuous function consisting of a line that increases from the origin, followed by a 
constant value that begins at some positive reinforcement rate. This is arguably the 
simplest function form that can describe data that ascend from the origin and then 
level off. The asymptotic exponential and asymptotic power functions have differen-
tial properties similar to those of a hyperbola. 

The four function forms (including the hyperbola) were compared on the basis of 
the percentage of variance they accounted for, and in terms of the randomness of the 
residuals left by their least squares fits. Based on these criteria, the hyperbola pro-
vided a better fit to the data from the fifteen experiments in this series than did the 
other function forms and it accounted for essentially all the variance in the data. The 
other forms accounted for significantly less variance, and left residuals that showed 
significantly more deviations from randomness. These results indicate that the  
artificial organism’s steady-state behavior was consistent with the quantitative law of 
effect, and that the hyperbolic form of the relationship between target behavior  
frequency and reinforcement frequency was both unique and robust, that is, it  
provided a better description of the data than other, similar, function forms, and did 
not depend on the form or mean of the fitness density function. 

3.2   Study of Variations in the Components of the Evolutionary Algorithm 

In a series of twelve experiments, different combinations of fitness definition, repro-
duction method, and mutation method, along with various fitness density function 
forms, were studied. Specific component variations tested included the specific  
individual fitness definition, crossover reproduction, bit-flip mutation, and random 
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individual mutation. Twelve combinations of these component variations, along with 
the variations used in the first series of experiments were tested. 

Least squares fits of a hyperbola to the data from these experiments accounted for 
essentially all the variance of the target behavior. The three alternative function forms 
were also fitted to the data and were found to account for significantly less variance 
than the hyperbola, and to leave residuals showing significantly more deviations from 
randomness. These results indicate that the hyperbolic relationship between target be-
havior frequency and reinforcement frequency did not depend on any specific defini-
tion of fitness, or on any specific implementation of reproduction or mutation, or on 
any specific combination of these component variations, although only a subset of the 
possible combinations of component variations was tested. 

3.3   Parametric Study of Mutation Rate 

Using the same component variations as in the first series of experiments, together 
with a linear fitness density function, all possible combinations of five fitness function 
means (10, 20, 40, 100, and 200) and six mutation rates (1%, 3%, 5%, 10%, and 20%) 
were studied in thirty experiments. 

Again, least squares fits of a hyperbola accounted for essentially all the variance in 
the target behavior for these thirty data sets, and the three alternative function forms 
accounted for significantly less variance and left residuals that were significantly less 
random than the hyperbola. These results indicate that the hyperbolic form of the be-
havior-reinforcement relationship does not depend on the mutation rate. 

Data from these experiments also permit a parametric examination of the effects of 
mean parental fitness and mutation rate on the parameters, k and re, of the hyperbola. 
Both were affected by the two variables, but k was much more strongly affected by 
mean parental fitness, whereas re was much more strongly affected by mutation rate. 
Recall that lower mean parental fitnesses cause fitter parents to be selected for mat-
ing. The results of these experiments showed that the fitter the parents selected for 
mating, the higher the asymptote of the hyperbola. Put another way, a given rein-
forcement rate, r, generated a higher response rate, R, the fitter the parents selected for 
mating. This effect is analogous to the effect of reinforcer magnitude on the behavior 
of live organisms. Hence larger reinforcer magnitudes can be represented by lower 
mean parental fitnesses in the evolutionary algorithm. 

The principal effect of higher mutation rates was to increase the value of re and 
hence decrease the curvature of the hyperbola. Put another way, to achieve a given re-
sponse rate, R, a greater reinforcement rate, r, was required the greater the mutation 
rate. Not surprisingly, then, mutation diluted the effect of reinforcement.  

4   Conclusion and Future Directions 

An evolutionary algorithm, the operation of which was not associated with an opti-
mality condition, was used as a behavioral mechanism for an artificial organism, and 
was shown to generate steady-state behavior consistent with the well-established 
quantitative law of effect (Equation 1). Three series of experiments demonstrated that 
this result was robust and unique. The result was robust inasmuch as it was independ-
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ent of the specific methods of implementing the rules of the evolutionary algorithm. 
Evidently, robust outcomes of evolutionary algorithms for reinforcement learning are 
not unusual [8]. The result was unique inasmuch as a hyperbola described the organ-
ism’s steady-state behavior better than other, similar, function forms.  

While steady-state behavior was the focus of this research, the evolutionary  
algorithm used in these experiments also gives an artificial organism the ability to 
adapt continuously to a dynamic environment by tracking changes in reinforcement 
contingencies. In the absence of reinforcement, the organism’s repertoire reverts to its 
baseline state over a number of generations. The extent to which the dynamics of the 
evolutionary algorithm, such as its time course, correspond to the dynamics of the  
behavior of live organisms remains a topic for future research. 

The state space of the artificial organism used in these experiments was very sim-
ple, which reflects its origin as an analog of the basic unit of behavioral experimenta-
tion, namely, a single organism in a restricted environment that interacts with only 
one class of behavior. Indeed, the artificial organism operated in just one state, from 
which it could emit one of only two classes of behavior. This restricted repertoire is 
much simpler than the policies that are often studied in research on utility-based and 
action-based reinforcement learning [5, 8]. But just as the basic laboratory preparation 
is a building block for more complicated experimental environments, the evolutionary 
algorithm described here might prove useful as a building block for dealing with more 
complicated state spaces.  

In the experimental analysis of behavior, a state space is characterized by what is 
called a discriminative stimulus, and behavior associated with that (often complex) 
stimulus is said to be under its control or, more generally, under stimulus control. 
Mapping behavior to discriminative stimuli in behavior analysis is analogous to map-
ping actions to states in artificial intelligence research, although the former mapping 
is always probabilistic. A sequence of mappings between discriminative stimuli and 
behavior constitutes what would be referred to in artificial intelligence research as a 
policy. The work described in this article dealt with a single mapping of one state to a 
set (with only two members) of probabilistic actions. There are many approaches to 
building a more complicated policy. One is to switch from 10-character bit strings to 
100-character integer strings, each of which represents the artificial organism’s be-
havioral repertoire in the presence of a different discriminative stimulus. The reper-
toire represented by each integer string would evolve (presumably in conformance 
with Equation 1) in the presence of its discriminative stimulus, and the collection of 
integer strings at any moment would constitute the organism’s policy at that moment. 
This approach would engage the problem of credit assignment inasmuch as rein-
forcement could be delivered after a sequence of actions. Methods of dealing with this 
problem include using chaining mechanisms and conditioned reinforcement, an ap-
proach taken by Touretzky and Saksida [13], or using a delay-of-reinforcement gradi-
ent that is informed by findings from live organisms. 

This research lies at the interface of the experimental analysis of behavior and arti-
ficial life. The evolutionary algorithm described in this article is a good candidate for 
a dynamics of live behavior, and it might be a useful building block for more  
complex artificial organisms that have the ability to adapt continuously to complex  
environments. 



422 J.J McDowell and Z. Ansari 

 

References 

1. Davison, M., McCarthy, D. The matching law. Erlbaum, Hillsdale, N.J. (1988) 
2. Daw, N.D., Touretzky, D.S. Operant behavior suggests attentional gating of dopamine sys-

tem inputs. Neurocomputing 38-40 (2001) 1161-1167. 
3. Herrnstein, R.J. Relative and absolute strength of response as a function of frequency of 

reinforcement. Journal of the Experimental Analysis of Behavior, 4 (1961) 267-272. 
4. Herrnstein, R.J. On the law of effect. Journal of the Experimental Analysis of Behavior, 13 

(1970) 243-266. 
5. Kaelbling, L.P., Littman, M.L., Moore, A.W. Reinforcement learning: A survey. Journal 

of Artificial Intelligence Research 4 (1996) 237-285. 
6. McDowell, J. J A computational model of selection by consequences. Journal of the Ex-

perimental Analysis of Behavior 81 (2004) 297-317. 
7. McDowell, J. J, Bass, R., Kessel, R. A new understanding of the foundation of linear sys-

tem theory and an extension to nonlinear cases. Psychological Review 100 (1993) 407-419. 
8. Moriarty, D.E., Schultz, A.C., Grefenstette, J. J Evolutionary algorithms for reinforcement 

learning. Journal of Artifical Intelligence Research 11 (1999) 241-276. 
9. Rachlin, H., Battalio, R., Kagel, J., Green, L. Maximization theory in behavioral psychol-

ogy. Behavioral and Brain Sciences 4 (1981) 371-417. 
10. Seth, A.K. Evolving behavioural choice: An investigation into Herrnstein’s matching law. 

In Floreano, D., Nicoud, J.D., Mondana, F. (eds.) Proceedings of the Fifth European Con-
ference on Artifical Life.  Springer-Verlag, Berlin Heidelberg New York (1999) 225-236. 

11. Seth, A. K. Modeling group foraging: Individual suboptimality, interference, and a kind of 
matching. Adaptive Behavior, 9 (2002) 67-90. 

12. Sutton, R.S., Barto, A.G. Reinforcement learning: An introduction. MIT Press, Cambridge, 
MA (1998). 

13. Touretzky, D.S., Saksida, L.M. Operant conditioning in Skinnerbots. Adaptive Behavior, 5 
(1997) 219-247. 


	Background: Matching Theory and Reinforcement Learning
	The Artificial Organism and Evolutionary Algorithm
	The Artificial Organism
	Fitness
	Parents
	Reproduction
	Mutation

	Experimental Studies of the Artificial Organism’s Behavior
	Parametric Study of the Form and Mean of the Fitness Density Function
	Study of Variations in the Components of the Evolutionary Algorithm
	Parametric Study of Mutation Rate

	Conclusion and Future Directions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




